.NET and Containers on AWS (Part 2: AWS App Runner)

The newest entry into AWS container management does a lot to remove the amount of configuration and management that you must use when working with containers. App Runner is a fully managed service that automatically builds and deploys the application as well creating the load balancer. App Runner also manages the scaling up and down based upon traffic. What do you, as a developer, have to do to get your container running in App Runner? Let’s take a look.

First, log into AWS and go to the App Runner console home. If you click on the All Service link you will notice a surprising AWS decision in that App Runner is found under the Compute section rather than the Containers section, even though its purpose is to easily run containers. Click on the Create an App Runner Service button to get the Step 1 page as shown below:

Creating an App Runner service

The first section, Source, requires you to identify where the container image that you want to deploy is stored. You currently, at the time of this writing, can choose either a container registry, Amazon ECR, or a source code repository. Since we have already loaded an image in ECR, let us move forward with this option by ensuring Container registry and Amazon ECR are selected, and then clicking the Browse button to bring up the image selection screen as shown below.

Selecting a container image from ECR

In this screen we selected the “prodotnetonaws” image repository that we created in the last post and the container image with the tag of “latest”.

Once you have completed the Source section, the next step is to determine the Deployment settings for your container. Here, your choices are to use the Deployment trigger of Manual, which means that you must fire off each deployment yourself using the App Runner console or the AWS CLI, or Automatic, where App Runner watches your repository, deploying the new version of the container every time the image changes. In this case, we will choose Manual so that we have full control of the deployment.

Warning: When you have your deployment settings set to Automatic, every time the image is updated will trigger a deployment. This may be appropriate in a development or even test environment, but it is unlikely that you will want to use this setting in a production setting.

The last data that you need to enter on this page is to give App Runner an ECR access role that App Runner will use to access ECR. In this case, we will select Create new service role and App Runner will pre-select a Service name role. Click the Next button when completed.

The next step is entitled Configure service and is designed to, surprisingly enough, help you configure the service. There are 5 sections on this page, Service settings, Auto scaling, Health check, Security, and Tags. The only section that is expanded is the first, all of the other sections need to be expanded before you see the options.

The first section, Service settings, with default settings can be seen below.

Service settings in App Runner

Here you set the Service name, select the Virtual CPU & memory, configure any optional Environmental variables that you may need, and determine the TCP Port that your service will use. If you are using the sample application that we loaded into ECR earlier in the chapter you will need to change the port value from the default 8080 to port 80 so that it will serve the application we configured in the container. You also have the ability, under Additional configuration, to add a Start command which will be run on launch. This is generally left blank if you have configured the entry point within the container image. We gave the service the name “ProDotNetOnAWS-AR” and let all the rest of the settings in this section remain as default.

The next section is Auto scaling, and there are two major options, Default configuration and Custom configuration, each of which provide the ability to set the auto scaling values as shown below.

Setting the Auto scaling settings in App Runner

The first of these auto scaling values is Concurrency. This value represents the maximum number of concurrent requests that an instance can process before App Runner scales up the service. The default configuration has this set at 100 requests that you can customize if using the Custom configuration setting.

The next value is Minimum size, or the number of instances that App Runner provisions for your service, regardless of concurrent usage. This means that there may be times where some of these provisioned instances are not being use. You will be charged for the memory usage of all provisioned instances, but only for the CPU of those instances that are actually handling traffic. The default configuration for minimum size is set to 1 instance.

The last value is Maximum size. This value represents the maximum number of instances to which your service will scale; once your service reaches the maximum size there will be no additional scaling no matter the number of concurrent requests. The default configuration for maximum size is 25 instances.

If any of the default values do not match your need, you will need to create a custom configuration, which will give you control over each of these configuration values. To do this, select Custom configuration. This will display a drop-down that contains all of the App Runner configurations you have available (currently it will only have “DefaultConfiguration”) and an Add new button. Clicking this button will bring up the entry screen as shown below.

Customizing auto scaling in App Runner

The next section after you configure auto scaling is Health check. The first value you set in this section is the Timeout, which describes the amount of time, in seconds, that the load balancer will wait for a health check response. The default timeout is 5 seconds. You also can set the Interval, which is the number of seconds between health checks of each instance and is defaulted to 10 seconds. You can also set the Unhealthy and Health thresholds, where the unhealthy threshold is the number of consecutive health check failures that means that an instance is unhealthy and needs to be recycled and the health threshold is the number of consecutive successful health checks necessary for an instance to be determined to be healthy. The default for these values is 5 requests for unhealthy and 1 request for healthy.

You next can assign an IAM role to the instance in the Security section. This IAM role will be used by the running application if it needs to communicate to other AWS services, such as S3 or a database server. The last section is Tags, where you can enter one or more tags to the App Runner service.

Once you have finished configuring the service, clicking the Next button will bring you to the review screen. Clicking the Create and deploy button on this screen will give the approval for App Runner to create the service, deploy the container image, and run it so that the application is available. You will be presented with the service details page and a banner that informs you that “Create service is in progress.” This process will take several minutes, and when completed will take you to the properties page as shown below.

After App Runner is completed

Once the service is created and the status is displayed as Running, you will see a value for a Default domain which represents the external-facing URL. Clicking on it will bring up the home page for your containerized sample application.

There are five tabs displayed under the domain, Logs, Activity, Metrics, Configuration, and Custom Domain. The Logs section displays the Event, Deployment, and Application logs for this App Runner service. This is where you will be able to look for any problems during deployment or running of the container itself. You should be able, under the Event log section, to see the listing of events from the service creation. The Activity tab is very similar, in that it displays a list of activities taken by your service, such as creation and deployment.

The next tab, Metrics, tracks metrics related to the entire App Runner service. This where you will be able to see information on HTTP connections and requests, as well as being able to track the changes in the number of used and unused instances. By going into the sample application (at the default domain) and clicking around the site, you should see these values change and a graph become available that provides insight into these various activities.

The Configuration tab allows you to view and edit many of the settings that we set in the original service creation. There are two different sections where you can make edits. The first is at the Source and deployment level, where you can change the container source and whether the deployment will be manual or automatically happen when the repository is updated. The second section where you can make changes is at the Configure service level where you are able to change your current settings for autoscaling, health check, and security.

The last tab on the details page is Custom domain. The default domain will always be available for your application; however, it is likely that you will want to have other domain names pointed to it – we certainly wouldn’t want to use https://SomeRandomValue.us-east-2.awsapprunner.com for our company’s web address. Linking domains is straightforward from the App Runner side. Simply click the Link domain button and input the custom domain that you would like to link, we of course used “prodotnetonaws.com”. Note that this does not include “www”, because this usage is currently not supported through the App Runner console. Once you enter the customer domain name, you will be presented the Configure DNS page as shown below.

Configuring a custom domain in App Runner

This page contains a set of certificate validation records that you need to add to your Domain Name System (DNS) so that App Runner can validate that you own or control the domain. You will also need to add CNAME records to your DNS to target the App Runner domain; you will need to add one record for the custom domain and another for the www subdomain if so desired. Once the certificate validation records are added to your DNS, the customer domain status will become Active and traffic will be directed to your App Runner instance. This evaluation can take anywhere from minutes to up to 48 hours.

Once your App Runner instance is up and running this first time, there are several actions that you can take on it as shown in the upper right corner as shown a couple of images ago. The first is the orange Deploy button. This will deploy the container from either the container or source code repository depending upon your configuration. You also can Delete the service, which is straightforward, as well as Pause the service. There are some things to consider when you pause your App Runner service. The first is that your application will lose all state – much as if you were deploying a new service. The second consideration is that if you are pausing your service because of a code defect, you will not be able to redeploy a new (presumably fixed) container without first resuming the service.

.NET and Containers on AWS (Part 1: ECR)

Amazon Elastic Container Registry (ECR) is a system designed to support storing and managing Docker and Open Container Initiative (OCI) images and OCI-compatible artifacts. ECR can act as a private container image repository, where you can store your own images, a public container image repository for managing publicly accessible images, and to manage access to other public image repositories. ECR also provides lifecycle policies, that allow you to manage the lifecycles of images within your repository, image scanning, so that you can identify any potential software vulnerabilities, and cross-region and cross-account image replication so that your images can be available wherever you need them.

As with the rest of AWS services, ECR is built on top of other services. For example, Amazon ECR stores container images in Amazon S3 buckets so that server-side encryption comes by default. Or, if needed, you can use server-side encryption with KMS keys stored in AWS Key Management Service (AWS KMS), all of which you can configure as you create the registry. As you can likely guess, IAM manages access rights to the images, supporting everything from strict rules to anonymous access to support the concept of a public repository.

There are several different ways to create a repository. The first is through the ECR console by selecting the Create repository button. This will take you to the Create repository page as shown below:

Through this page you can set the Visibility settings, Image scan settings, and Encryption settings. There are two visibility settings, Private and Public. Private repositories are managed through permissions managed in IAM and are part of the AWS Free Tier, with 500 MB-month of storage for one year for your private repositories. Public repositories are openly visible and available for open pulls. Amazon ECR offers you 50 GB-month of always-free storage for your public repositories, and you can transfer 500 GB of data to the internet for free from a public repository each month anonymously (without using an AWS account.) If authenticating to a public repository on ECR, you can transfer 5 TB of data to the internet for free each month and you get unlimited bandwidth for free when transferring data from a public repository in ECR to any AWS compute resources in any region  

Enabling Scan on push on means that every image that is uploaded to the repository will be scanned. This scanning is designed to help identify any software vulnerabilities in the uploaded image, and will automatically run every 24 hours, but turning this on will ensure that the image is checked before it can ever be used. The scanning is being done using the Common Vulnerabilities and Exposures (CVEs) database from the Clair project, outputting a list of scan findings.

Note: Clair is an open-source project that was created for the static analysis of vulnerabilities in application containers (currently including OCI and docker). The goal of the project is to enable a more transparent view of the security of container-based infrastructure – the project was named Clair after the French term which translates to clear, bright, or transparent.

The last section is Encryption settings. When this is enabled, as shown below, ECR will use AWS Key Management Service (KMS) to manage the encryption of the images stored in the repository, rather than the default encryption approach.

You can use either the default settings, where ECR creates a default key (with an alias of aws/ecr) or you can Customize encryption settings and either select a pre-existing key or create a new key that will be used for the encryption.

Other approaches for creating an ECR repo

Just as with all the other services that we have talked about so far, there is the UI-driven way to build an ECR like we just went through and then several other approaches to creating a repo.


You can create an ECR repository in the AWS CLI using the create-repository command as part of the ECR service.

C:\>aws ecr create-repository

    –repository-name prodotnetonaws

    –image-scanning-configuration scanOnPush=true

    –region us-east-1

You can control all of the basic repository settings through the CLI just as you can when creating the repository through the ECR console, including assigning encryption keys and defining the repository URI.

AWS Tools for PowerShell

And, as you probably aren’t too surprised to find out, you can also create an ECR repository using AWS Tools for PowerShell:

C:\> New-ECRRepository

-RepositoryName prodotnetonaws

-ImageScanningConfiguration_ScanOnPush true

Just as with the CLI, you have the ability to fully configure the repository as you create it.

AWS Toolkit for Visual Studio

As well as using the AWS Toolkit for Visual Studio, although you must depend upon the extension’s built-in default values because the only thing that you can control through the AWS Explorer is the repository name as shown below. As you may notice, the AWS Explorer does not have its own node for ECR and instead puts the Repositories sub-node under the Amazon Elastic Container Service (ECS) node. This is a legacy from the past, before ECR really became its own service, but it is still an effective way to access and work with repositories in Visual Studio.

Once you create a repository in VS, going to the ECR console and reviewing the repository that was created will show you that it used the default settings, so it was a private repository with both “Scan on push” and “KMS encryption” disabled.

At this point, the easiest way to show how this will all work is to create an image and upload it into the repository. We will then be able to use this container image as we go through the various AWS container management services.

Note: You will not be able to complete many of these exercises with Docker already running on your machine. You will find download and installation instructions for Docker Desktop at https://www.docker.com/products/docker-desktop. Once you have Desktop installed you will be able to locally build and run container images.

We will start by creating a simple .NET ASP.NET Core sample web application in Visual Studio through File -> New Project and selecting the ASP.NET Core Web App (C#) project template. You then name your project and select where to store the source code. Once that is completed you will get a new screen that asks for additional information as shown below. The checkbox for Enable Docker defaults as unchecked, so make sure you check it and then select the Docker OS to use, which in this case is Linux.

This will create a simple solution that includes a Docker file as shown below:

If you look at the contents of that generated Docker file you will see that it is very similar to the Docker file that we went through earlier, containing the instructions to restore and build the application, publish the application, and then copy the published application bits to the final image, setting the ENTRYPOINT.

FROM mcr.microsoft.com/dotnet/aspnet:5.0 AS base

FROM mcr.microsoft.com/dotnet/sdk:5.0 AS build
COPY ["SampleContainer/SampleContainer.csproj", "SampleContainer/"]
RUN dotnet restore "SampleContainer/SampleContainer.csproj"
COPY . .
WORKDIR "/src/SampleContainer"
RUN dotnet build "SampleContainer.csproj" -c Release -o /app/build

FROM build AS publish
RUN dotnet publish "SampleContainer.csproj" -c Release -o /app/publish

FROM base AS final
COPY --from=publish /app/publish .
ENTRYPOINT ["dotnet", "SampleContainer.dll"]

If you look at your build options in Visual Studio as shown below, you will see additional ones available for containers. The Docker choice, for example, will work through the Docker file and start the final container image within Docker and then connect the debugger to that container so that you can debug as usual.

The next step is to create the container image and persist it into the repository. To do so, right click the project name in the Visual Studio Solution Explorer and select Publish Container to AWS to bring up the Publish Container to AWS wizard as shown below.

The image above shows that the repository that we just created is selected as the repository for saving, and the Publish only the Docker image to Amazon Elastic Container Registry option in the Deployment Target was selected (these are not the default values for each of these options). Once you have this configured, click the Publish button. You’ll see the window in the wizard grind through a lot of processing, then a console window may pop up to show you the actual upload of the image, and then the wizard window will automatically close if successful.

Logging into Amazon ECR and going into the prodotnetonaws repository (the one we uploaded the image into), as shown below, will demonstrate that there is now an image available within the repository with a latest tag, just as configured in the wizard. You can click the icon with the Copy URI text to get the URL that you will use when working with this image. We recommend that you go ahead and do this at this point and paste it somewhere easy to find as that is the value you will use to access the image.

Now that you have a container image stored in the repository, we will look at how you can use it in the next article